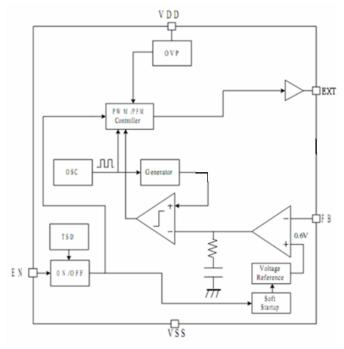


Features

- Min1.6V Startup @1mA Load
- 600mV Feedback Voltage
- 550KHz Internal Oscillator
- Soft Startup: 10mS Typical
- Peak Current Programmable by Bottom Sensing Resistor
- 300µA Typical Iq

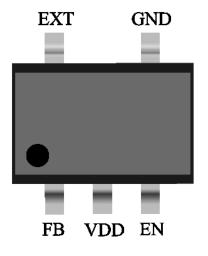
- Internal PWM/PFM Auto Mode Switching
- Up to 90% Efficiency
- External Enable
- Power OFF Current<1µA
- Over Voltage Protection
- 140°C Thermal Shut Down, 20°C Hysteresis


Applications

USB Charger

General Description

The EC9121 using the external NMOSFET. It is a high efficiency boost converter with 600mV feedback voltage. A switching frequency of 550KHz minimizes solution footprint by allowing the use of tiny low profile inductors and ceramic capacitors. The current mode PWM/PFM design is internally compensated, and the device has a 1.6V startup voltage with 1mA load. It needs few external components, only inductance, resistance and capacitance can meet the driving capacity.


Block Diagram

Pin Assignment

PIN NUMBER	PIN NAME FUNCTION		
1	FB	Feedback Input	
2	VDD	Power Supply	
3	EN	Enable. High Active	
4	GND	Power Ground	
5	EXT	Power MOSFET Gate Driver	

SOT23-5(Top view)

Absolute Maximum Ratings

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issue such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-dissipation limits of a given component.

Three basic approaches for enhancing thermal performance follow.

- Improving the power dissipation capability of the PCB design
- Improving the thermal coupling of the component to the PCB
- Introducing airflow in the system

Electrical Ch

Current

Current

Duty boundary for PWM/PFM

Current Limit Set Voltage DRV PMOS On Resistor

DRV NMOS On Resistor

DRV PMOS Max Output

DRV NMOS MAX Output

FB OVP Threshold

FB OVP Hysteresis

TSD Threshold

TSD Hysteresis

EN High Level

EN Low Level

Soft Start Time

Dmin

Vlim

Ronp

Ronn

Imaxp

Imaxn

Vovp

Vophys

TSD

TSDhys

VH

VL

Tss

15

250

10

7.5

230

190

720

100

140

20

10

0.3

1

Electrical Characteristics										
		(VDD = 5 V, Ta = 25 $^{\circ}$ C, Unless otherwise specified)								
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	CONDITION				
Power Supply Voltage for	V _{DD}	2.8		7	V	For normal operation after start-up				
normal operation										
Min Input Startup Voltage	V _{ST1}		1.6		V	1mA load, VDD tied to VOUT				
Input Startup Voltage with	V _{ST2}		2.6		V	VDD tied to VOUT				
Heavy Load										
Min Input Hold Voltage	V _{HLD}	0.9			V	VDD tied to VOUT				
Feedback Voltage	V _{FB}		600		mV					
Feedback Voltage	V _{FBTC}		130		ppm/℃					
Temperature Coefficient										
Feedback Voltage Supply	V _{REG}		0.2		%/V	Close Loop. Varying VDD by				
Regulation						adjusting Resistor Divider Ratio				
Load Regulation	I _{REG}		0.3		%/A					
Quiescent Current	lq		350		uA	No Switching				
OFF current	loff		1		uA					
Oscillator Frequency	fosc		550		KHz					
Max Duty	Dmax		90		%					

%

mV

Ohm

Ohm

mΑ

mΑ

mV

mV

degc

degc V

V

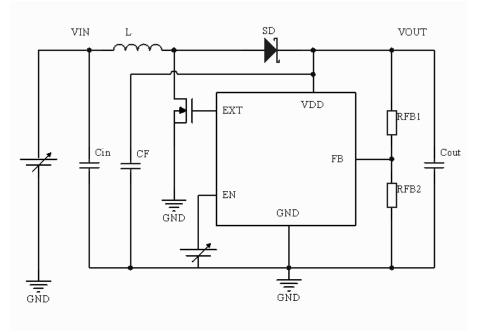
m S

Min measured at 3V VDD Min measured at 3V VDD

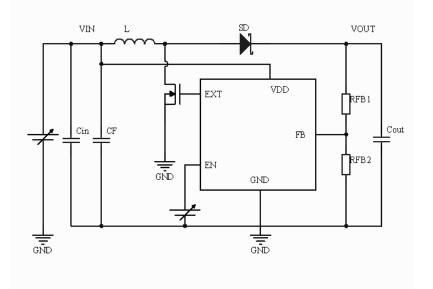
Min measured at 3V VDD

Min measured at 3V VDD

Measured at FB


Measured at FB

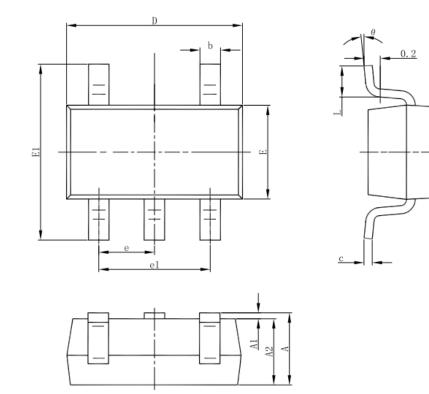
VIN=1.5V,VOUT=5V, LOAD=1mA



Application Circuits

1) Power supply tied to VOUT

2) Power supply tied to VIN(VIN>2.8V)


3) External Component Recommendation:

- 1) Cin=22uF
- 2) Cout=22uF
- 3) L=2.2uH
- 4) C_F=1uF

Package Information

5-pin SOT23-5L Outline Dimensions

Sumb a l	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
А	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°